SiC MOSFET在汽车和电源应用中优势显著

发布者:admin 发布时间:2019-10-27 07:58 浏览次数:

  商用硅基功率MOSFET已有近40年的历史,自问世以来,MOSFET和IGBT一直是开关电源的主要功率处理控制组件,被广泛用于电源、电机驱动等电路设计。

  不过,这一成功也让MOSFET和IGBT体会到因成功反而受其害的含义。随着产品整体性能的改善,特别是导通电阻和开关损耗的大幅降低,这些半导体开关的应用范围越来越广。结果,市场对这些硅基MOSFET和IGBT的期望越来越高,对性能的要求越来越高。

  尽管主要的半导体研发机构和厂商下大力气满足市场要求,进一步改进MOSFET/ IGBT产品,但在某些时候,收益递减法则占主导。几年来,尽管付出投入很大,但成效收获甚微。技术和产品最终发展到一个付出与收获不成正比的阶段,并不罕见,这是在为新的颠覆性方法和新产品问世奠定基础。

  对于MOSFET器件,这个颠覆性技术创新周期是开发和掌握新基础材料的结果。与基于纯硅的MOSFET比较,基于碳化硅(SiC)的MOSFET的性能更胜一筹。 请注意,本文对比测试所用产品不是研发样品或演示原型,而是已经商用的基于SiC的MOSFET。

  作为一个重要的快速发展的应用领域,电动汽车和混动汽车(EV/HEV)的发展受益于MOSFET技术进步,反过来又推到了MOSFET的研发制造活动。不管消费者是如何想的,这些满载电池的汽车不只是一个大型电池组连接数个牵引电机那样简单(混动汽车还有一个小型汽油发动机给电池充电),而是需要大量电子模块来驱动系统运行,管理设备,执行特殊功能,如图1所示。

  图1:电动汽车和混合动汽车不只是一台大容量电池连接数台牵引电机,还有许多较小的电子子系统及电源,以及给大型电池组充放电和管理电池组的高功率子系统。

  ·辅助功能电源:中控台、电池管理控制、空调、信息娱乐系统、GPS、网络连接(4 kW/ 50 kHz-200 kHz量级)

  为什么要注重能效? 续航里程显然是消费者选购电动汽车和混合动汽车的重要考虑因素之一。逆变器的性能提高幅度即便很小,也能导致消费者能够看到的汽车基本性能指标明显提高。

  ·由于工作温度较高的系统固有的要求和限制,整体封装需要具有更大的灵活性;

  幸运的是,SiC提供了一条通向更高能效以及提高相关性能的途径。在结构和性能上,SiCMOSFET与主流的纯硅MOSFET有何不同?简而言之,SiCMOSFET是在SiC n +衬底上加一个 SiC n掺杂外延层(又称漂移层),如图2所示。关键参数导通电阻RDS(ON)在很大程度上取决于源极/基极和漂移层之间的沟道电阻RDrift。

  图2:不同于纯硅MOSFET,SiC MOSFET在n +型 SiC衬底上面制作一个碳化硅外延(漂移)层,源极和栅极置于SiC漂移层顶部。

  当RDrift值给定,结温是25⁰C时,SiC晶体管裸片实际面积是硅超结晶体管裸片面积的几分之一,如果使两个管子的芯片面积相同,那么SiC晶体管的性能要高出很多。另一个比较SiC和硅的方法是用大家熟悉的品质因数(FOM),即RDS(ON)×芯片面积(品质因数越低越好)。在1200V阻断电压下,意法半导体SiC MOSFET的FOM值很小,约为市面上最好的高压硅MOSFET(900V超结管)的十分之一。

  与牵引逆变器常用的硅基IGBT相比,SiC MOSFET主要有以下优点:

  ·SiC器件具有坚固、快速的本征二极管,无需外部二极管;该本征二极管的恢复电荷极小,几乎可以忽略不计;

  ·工作温度更高(200⁰C),从而降低了冷却要求和散热要求,同时提高了可靠性;

  ·在能效相同的条件下,开关频率是IGBT的4倍,由于无源器件和外部元件少,重量、尺寸和成本更低。

  经验丰富的工程师知道,功率器件只是整个系统的众多重要组件之一。要想使设计变得可靠、高效,有成本效益,还需要给MOSFET选择适合的驱动器。适合的驱动器是根据目标MOSFET及其负载特有的电流变化率、电压值和时序限制而专门设计的驱动器。由于硅基MOSFET技术已经成熟,市面上有很多品牌的标准驱动器,保证驱动器/ MOSFET组合正常工作。

  因此,人们关心SiC MOSFET驱动的难易程度,更关心驱动器在市场上是否有售,这是很正常的事情。令人兴奋的是,驱动SiCMOSFET几乎与驱动硅基MOSFET一样容易,驱动一个80mΩ器件,只需要20V栅-源电压、最大约2A的驱动电流。因此,在许多情况下都可以使用简单标准的栅极驱动器。意法半导体和其它厂商开发出了针对SiC MOSFET优化的栅极驱动器,例如ST TD350。

  在这款先进的栅极驱动器内,创新的有源米勒钳位功能大多数应用中节省了负电压栅极驱动,并允许使用简单的自举电源驱动高边驱动器;电平和延迟可调节的两级关断功能可以预防关断操作产生大量的过电压,以防万一发生过流或短路情况,两级关断功能中设置的延迟还可用于控制开关的开通操作,防止脉冲宽度失真。(为进一步简化SiC MOSFET的使用,意法半导体发布了题目为 “如何微调SiC MOSFET栅极驱动器,最大限度降低损耗”的应用笔记,全面详细介绍了驱动器的要求和最佳性能解决方案。)

  制造工艺的进步有时并不能保证新技术一定会产业化和大规模应用,而SiC MOSFET却是一个例外。目前,SiC MOSFET已经大批量生产,并被混动汽车和电动汽车采用,在能效、性能和工作条件方面取得切实的成效,并传导到电路级和系统级。

  我们用混动汽车和电动汽车的80kW牵引电机逆变器电源模块做了一个SIC MOSFET与硅IGBT的对比测试,结果显示,在许多关键参数方面,650V SIC MOSFET远胜硅IGBT。这个三相逆变器模块采用双极性PWM控制拓扑,具有同步整流模式。两种器件都是按照结温小于绝对最大额定结温80%确定器件尺寸。硅IGBT方案使用4个并联的650V/200A IGBT和额定值相同的相关续流硅二极管;基于SIC MOSFET的方案设计采用7个并联的650V/100A SiC MOSFET,未使用任何外部二极管(只用本征二极管);额定峰值功率480Arms(10秒),正常负载230Arms。其它工作条件是:

  注意到,SiC MOSFET与硅基IGBT对比,几乎所有功率损耗参数都有明显改善。当并联MOSFET时,所产生的RDS(ON)导通电阻除以MOSFET的个数,致使导通损耗接近零,因此,SiC MOSFET的导通损耗低于IGBT。相反,当并联IGBT时,所产生的VCE(SAT)电压不会线性下降,并且最小导通电压降是限制在大约0.8至1 V范围内。

  不难看出,在整个负载范围内,基于SiC的MOSFET解决方案的功率损耗低很多。由于导通电压降较低,这些MOSFET在100%负载时的导通损耗也从125 W降低到55 W,如图3a和3b所示。

  图3:a)在整个负载范围内,基于SiC的设计(红线)的功耗比硅基IGBT(蓝线)低很多(左图)。 b)SiC系统(红线)的能效明显高于纯硅方案(蓝线),在较低的负载比时尤为显著。

  在低负载时,SiC器件的能效比硅IGBT高达3%;在整个负载范围内,总能效高至少 1%。尽管1%看起来似乎不高,但对于这个功率等级,1%代表了很高的功耗、耗散功率和散热量。工程师知道,高温是持久性能和可靠性的大敌。此外,高能效还能延长电动汽车续航里程,这是汽车制造商和消费者比较看重的价值主张。在16 kHz开关频率下,比较SiC与IGBT的结温,从低负载到满负载,显然SiC是赢家,两者的冷却液温度均为85⁰C,如图4所示。数据表明,因为损耗高,IGBT冷却系统的效率必须更高。

  图4:结温决定开关频率高低、可靠性以及其它性能;在可靠性方面,SiC解决方案(红线)优于硅解决方案(蓝线%负载仍然保持较低的Δ(Tj-Tfluid)温差。

  SiC器件结温几乎在整个开关频率范围内都处于较低的水平,如图5所示,甚至开关频率低至8 kHz时,温度也比IGBT低,硅基IGBT在46 kHz时已超出额定结温范围。

  图5:在整个开关频率范围内,结温低也是SiC器件的主要优势;这两个方案在8 kHz时结温大致相同,但之后SiC(红线)逐渐优于Si(蓝线),后者随着开关频率的提高而大幅增加。

  在峰值功率脉冲条件下,SiC MOSFET导通损耗高于IGBT,为使结温保持在最高结温以下(通常为200⁰C的Tjmax的80%),我们限定SiC MOSFET的尺寸,这时SiC MOSFET具有以下优势:

  ·在整个负载范围内,结温Tj和冷却液温度Tfluid的温差小,可提高可靠性。

  这些特性和优点为用户带来了切实的好处,例如,能效提高至少1%(损耗降低75%);逆变器侧冷却系统更小、更轻(减少约80%);电源模块更小、更轻(减少50%)。

  当讨论技术进步及其带来的好处时,不考虑成本因素的讨论都是片面的。目前,SiC MOSFET的成本是硅IGBT的4-5倍,不过,SiCMOSFET在物料清单、冷却系统和能耗方面的节省,降低了系统总成本,通常可以抵消掉这些基础组件的成本差距。在未来2-5年,随着行业转向大直径晶圆,意法半导体已经开始转型,这一价差应该会降至3倍甚至2.5倍,品质因数RDSON× 面积也将得到改善,产量将会提高。从长远看,未来5-10年,随着这些参数改进,成本将会继续降低。

  SiC功率开关带来了改进性能的希望,同时也将这些希望变成了现实,在应用和安装中几乎不存在设计折衷问题。随着汽车厂商加紧研发混动汽车、电动汽车和许多相关电源模块,以及其它以大功率电机为中心的应用,SiC功率开关可以在成功设计中发挥重要作用,即使改进步伐很小,也会为系统级带来巨大的进步。


上一篇:天津大学813半导体物理考研参考书及真题解析    下一篇:本征半导体